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Abstract. Available experimental data on decay rates for B → ψK, and decay rates and transversity
amplitudes for B → ψK∗ are used to investigate nonfactorization contributions in these decays using five
different theoretical models for the formfactors. Using the knowledge on nonfactorization so gained, we
study the processes Bs → ψ(η, η′), Bs → ψφ and B → ψ(2S)K∗. We find that present experimental data
for the last two processes are consistent with the predictions of most of the models considered.

1 Introduction

It was shown in [1,2] that factorization approximation
used in conjunction with formfactors derived in most com-
monly used models failed to account for the ratio (B →
ψK)/(B → ψK∗) and the longitudinal polarization ΓL/Γ
in B → ψK∗ decays. Subsequently, it was realized [3] that
nonfactorized contributions could play an important role
in these color-suppressed decays, and it was demonstrated
[4–6] how such contributions could lead to an understand-
ing of B → ψK∗ and ψK data.

Our aim in this work is to investigate the role of non-
factorization and, where relevant, final state interactions
(fsi). The most recent CLEO data [7] enable us a com-
plete amplitude analysis of B → ψK∗ decay. We use this
to determine the three partial wave amplitudes, S, P and
D, and the two relative phases. We exploit this knowledge
in our work (see [6] for a more restricted analysis).

With the knowledge gained from the study of B →
ψK and ψK∗ decays, we have also investigated the pro-
cesses Bs → ψη, ψη′, ψφ with special emphasis on the role
of nonfactorization. Furthermore, we have extended our
analysis to channels with ψ(2S), instead of ψ, in the final
state.

2 (B,Bs) → ψ(ψ(2S))P decays

We begin with the formulation for B decays involving ψ
(or ψ(2S)) and a pseudoscalar particle in the final state.
The decay amplitude, in the notation of [5], is written as

A(B → ψP )

= 〈ψP |Heff
w |B〉 (1)

=
GF√

2
V ∗
cbVcs

[
a2 〈ψP |(bs)(cc)|B〉 + C1 〈ψP |H(8)

w |B〉
]
,

where the brackets (bs) etc. represent (V −A) quark cur-
rents and

H(8)
w =

1
2

∑
a

(bλas)(cλac), (2)

a2 =
C1

Nc
+ C2. (3)

Nc is the number of colors (taken to be 3) and λa are the
Gell-Mann matrices. C1 and C2 are the standard Wilson
coefficients for which we take the values [5],

C1 = 1.12 ± 0.01, C2 = −0.27 ± 0.03, (4)

which are consistent with the choice in [8].
While the second term in (1), the matrix element of

H(8)
w , is nonfactorized, the first term receives both factor-

ized and nonfactorized contributions [9]. We introduce the
following definitions to proceed further,

〈ψ|(cc)|0〉 = εµmψfψ, (5)

〈P |(bs)|B〉 =
(
pB + pP − m2

B −m2
P

q2
q

)
µ

×FBP1 (q2) +
m2
B −m2

P

q2
qµF

BP
0 (q2). (6)

The first matrix element in (1) is then written as

〈ψP |(bs)(cc)|B〉
= 〈P |(bs)|B〉〈ψ|(cc)|0〉 + 〈Pψ|(bs)(cc)|B〉nf (7)

≡ 2mψfψCP (ε.pB)
[
FBP1 (q2) + F

(1)nf
1 (q2)

]
, (8)

where we have defined

〈ψP |(bs)(cc)|B〉nf = 2mψfψCP (ε.pB)F (1)nf
1 (q2). (9)
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In (8) and (9), CP has the following values,

CP =




√
2
3

(
cos θP + 1√

2
sin θP

)
P ≡ η√

2
3

(
1√
2

cos θP − sin θP
)
P ≡ η′

1 P ≡ K0,K+

(10)

with the η − η′ mixing angle θP = −20◦. The superscript
(1) in F (1)nf

1 (q2) denotes ‘color-singlet’. The nonfactorized
matrix element of H(8)

w is parametrized as

〈ψP |H(8)
w |B〉nf = 2mψfψCP (ε.pB)F (8)nf

1 (q2). (11)

In terms of the definitions in (4) - (8), the decay am-
plitude for B → ψP is written as

A(B → ψP ) =
GF√

2
V ∗
cbVcsa

eff
2 2mψfψCP (ε.pB)FBP1 (q2),

(12)
where

aeff2 = a2

[
1 +

F
(1)nf
1 (q2)
FBP1 (q2)

+
C1

a2

F
(8)nf
1 (q2)
FBP1 (q2)

]
. (13)

As a short-hand notation, we introduce two parameters
χF1 and ξF1 as measures of nonfactorized contributions,
as follows:

aeff2 ≡ a2

(
1 +

C1

a2
χF1

)
≡ a2ξF1 , (14)

where,

χF1 ≡ a2

C1

F
(1)nf
1 (q2)
FBP1 (q2)

+
F

(8)nf
1 (q2)
FBP1 (q2)

. (15)

Note that as C1/a2 is of the order of 10, the nonfac-
torized contribution from color-octet current is greatly en-
hanced. A departure of ξF1 from unity, or χF1 from zero,
signals nonfactorized contribution.

In terms of the quantities defined in (8) - (13), the
decay rate for the exclusive channel B → ψP is given by,

Γ (B → ψP ) (16)

=
G2
F

4π
|Vcb|2|Vcs|2

∣∣∣aeff2

∣∣∣2 f2
ψ|CP |2|k|3 ∣∣FBP1 (m2

ψ)
∣∣2 ,

where |k| is the momentum of the decay products in B
rest-frame.

Other parameters we used were, Vcs = 0.974, Vcb =
0.04 [10], fψ = 0.384 ± 0.014 GeV and fψ(2S) = 0.282 ±
0.014 GeV [11].

2.1 B → ψ(ψ(2S))K decays

We first consider the decay B+ → ψK+ whose branching
ratio is more precisely measured than that of the neutral
mode [10]. The decay rate formula for this process, (16),
can be rearranged and written as

ξF1 = (17)√
Γ (B+→ψK+)

(78.422 × 1012 GeV−2 sec−1)1/2 |Vcs||Vcb|a2fψFBK1 (m2
ψ)
.

Table 1. Model predictions of formfactor F1(q2) at q2 = m2
ψ or

m2
ψ(2S). In CDDFGN model, η stands for η8, the octet member.

This scheme cannot handle η1, the flavor singlet

BSW I BSW II CDDFGN AW ISGW

B+ → ψK+ 0.565 0.837 0.726 0.542 0.548
B+ → ψ(2S)K+ 0.707 1.31 0.909 0.678 0.760
B0
s → ψη 0.49 0.726 0.771 0.534 0.293

B0
s → ψ(2S)η 0.613 1.14 0.964 0.668 0.475

B0
s → ψη′ 0.411 0.609 — 1.06 0.463

B0
s → ψ(2S)η′ 0.514 0.954 — 1.33 0.752

Table 2. Model predictions of A1(m2
ψ), A2(m2

ψ), and V (m2
ψ)

formfactors for the processes B → ψK∗, B → ψ(2S)K∗ and
Bs → ψφ

A1 A2 V x y

BSW I 0.458 0.462 0.548 1.01 1.19
BSW II 0.458 0.645 0.812 1.41 1.77

B → ψK∗ CDDFGN 0.279 0.279 0.904 1.00 3.24
AW 0.425 0.766 1.19 1.80 2.81
ISGW 0.316 0.631 0.807 2.00 2.56
BSW I 0.549 0.554 0.685 1.01 1.25
BSW II 0.549 0.924 1.27 1.68 2.32

B → ψ(2S)K∗ CDDFGN 0.334 0.334 1.13 1.00 3.39
AW 0.509 0.916 1.49 1.80 2.94
ISGW 0.438 0.875 1.12 2.00 2.56
BSW I 0.374 0.375 0.466 1.00 1.24
BSW II 0.374 0.523 0.691 1.40 1.85

Bs → ψφ CDDFGN 0.265 0.279 0.919 1.05 3.47
AW 0.449 0.703 1.34 1.56 2.98
ISGW 0.237 0.396 0.558 1.67 2.35

A departure of ξF1 from unity signals the failure of
the factorization assumption for a particular model-value
of the formfactor. We employed five different models for
FBK1 (m2

ψ). They were: (i) BSW I [12], where the form-
factors are calculated at q2 = 0 and extrapolated us-
ing a monopole form with the pole masses given in [12],
(ii) BSW II, where a dipole extrapolation is used for
F1(q2)A2(q2) and V (q2), with the same pole masses as
in [12], (iii) CDDFGN [13], where the normalization of
the formfactors are extrapolated using a monopole form,
(iv) AW [14], where the formfactors are evaluated at the
zero-recoil point corresponding to the maximum momen-
tum transfer and then extrapolated down to the required
q2 using a monopole form, and (v) ISGW [15], where the
formfactors are calculated at the maximum q2 and extrap-
olated down to the needed value of q2 with an exponential
form. The predicte formfactors in these five models rele-
vant to the processes of interest are shown in Tables 1 and
2.

We allowed FBK1 (m2
ψ) to vary continuously and deter-

mined the allowed values of ξF1 from data. The results
are shown in Fig. 1, where the dots represent the values
of FBK1 (m2

ψ) in various models which read from the left,
AW, ISGW, BSW I, CDDFGN, and BSW II, in that or-
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Fig. 1. Allowed region (bounded by the two curves) of ξF1 as a
function of FBP1 (m2

ψ) defined by B+ → K+ψ. The dots show
the model predictions of the formfactors; from left to right:
AW, ISGW, BSW I, CDDFGN, BSW II

Table 3. Average branching ratios predicted by the theoretical
models for three choices of ξF1 .

(Factorization) (ξF1 = 2) (ξF1 = 3)
×10−3 ×10−3 ×10−3

B(Bs → ψη) 0.037 0.15 0.33
B(Bs → ψ(2S)η) 0.017 0.07 0.16
B(Bs → ψη′) 0.084 0.34 0.76
B(Bs → ψ(2S)η′) 0.032 0.13 0.28

der. ξF1 different from unity (or χF1 different from zero),
signals presence of nonfactorization contributions.

We repeated the above analysis for B0 → ψK0 and
B+ → ψ(2S)K+. The results are displayed in the plots
of Fig. 2. For B+ → ψK+, this is simply another way
to display the results shown in Fig. 1. In Fig. 2 we have
plotted the branching ratios predicted in the five differ-
ent models we have considered against the parameter ξF1 .
One can read-off the amount of nonfactorization needed to
understand the measured branching ratios in each model.
Clearly, nonfactorized contributions are needed to explain
data. For example, B+ → ψK+ branching ratio requires
that the nonfactorization parameter ξF1 is in the range
(2 - 3.5), while B0 → ψK0 data require ξF1 to be in the
range (1.5 - 3). BSW II model requires the least amount
of nonfactorization due to the fact that a dipole extrapo-
lation of the formfactors allows the factorized term to be
larger thereby reducing the necessity for the nonfactorized
contribution.

2.2 Bs → ψ(ψ(2S))η, η′ decays

The analysis of the branching ratio data for B →
ψ(ψ(2S)K decays can be used to predict the branching
ratios for Bs decays into ψ or ψ(2S) and η or η′ if we
assume that the amount of nonfactorized contribution is
approximately independent of the light flavor. The calcu-
lation proceeds in a straight forward manner. We show
the results in Fig. 3 where the branching ratios for Bs →

(ψη), (ψ(2S)η), (ψη′) or (ψ(2S)η′) are plotted as functions
of ξF1 for the five models we have considered.

For a given ξF1 , BSW II model produces the largest
branching ratios for Bs → ψ(ψ(2S))η. For Bs →
ψ(ψ(2S))η′ decays, the largest branching ratios for a given
ξF1 are generated in the AW model followed by those in
BSW II scheme. In order to get some feel for the predicted
branching ratios, we have presented the model-averaged
branching ratios in Table 3 for ξF1 = 1 (factorization),
ξF1 = 2 and ξF1 = 3.

3 (B,Bs) → ψ(ψ(2S)V decays

The decay amplitude for B → ψV in the notation of [5] is

A(B → ψV )

=
GF√

2
VcbV

∗
csa2mψfψ {(mB +mV )(ε∗1.ε

∗
2)

×
(
ABV1 (m2

ψ) +A
(1)nf
1 +

C1

a2
A

(8)nf
1

)

− (ε∗2.(pB − pV ))(ε∗1.(pB + pV ))
(mB +mV )

(18)

×
(
ABV2 (m2

ψ) +A
(1)nf
2 +

C1

a2
A

(8)nf
2

)

+
2i

(mB +mV )
εµναβε

∗µ
1 ε∗ν2 pαV p

β
B

×
(
V BV (m2

ψ) + V (1)nf +
C1

a2
V (8)nf

)}

In (18), ε1 and ε2 are the ψ and V polarization vectors
respectively. ABV1 , ABV2 and V BV are the formfactors de-
fined in [12] which contribute to the factorized part of
the decay amplitude. A(8)nf

1 , A(8)nf
2 and V (8)nf are the

nonfactorized contributions arising from the color-octet
current products (cc)(sb), the analogues of F (8)nf

1 in (11).
And A(1)nf

1 , A(1)nf
2 and V (1)nf are the analogues of F (1)nf

1
in (8).

The following definitions [5], in analogy with (14), fa-
cilitate shorter forms for the equations that follow.

ξi = 1 +
A

(1)nf
i

ABVi (m2
ψ)

+
C1

a2

A
(8)nf
i

ABVi (m2
ψ)

≡ 1 +
C1

a2
χi,

(i = 1, 2) (19)

ξV = 1 +
V (1)nf

V BV (m2
ψ)

+
C1

a2

V (8)nf

V BV (m2
ψ)

≡ 1 +
C1

a2
χV .

B → ψV decays can be discussed in three equivalent
basis-amplitudes: Helicity basis (H0, H+, H−), Trasversity
basis (A0, A||, A⊥), and Partial-wave basis (S, P,D). They
are related through the following definitions [17,18],

H0 = − 1√
3
S +

√
2
3
D

H+ =
1√
3
S +

1√
2
P +

1√
6
D (20)
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Fig. 2. Branching ratios as functions of
ξF1 in each model. Horizontal lines de-
fine the branching ratio bounds to one
standard deviation. Data from [10] for
B → ψK and [16] for B → ψ(2S)K
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Fig. 3. Branching ratios as a func-
tion of ξF1 in each model. In CDDFGN
model, η stands for η8 and there is no
prediction for η′. See Fig. 2 for legend

H− =
1√
3
S − 1√

2
P +

1√
6
D,

A0 = H0 = − 1√
3
S +

√
2
3
D

A|| =
1√
2
(H+ +H−) =

√
2
3
S +

1√
3
D (21)

A⊥ =
1√
2
(H+ −H−) = P.

All amplitudes in (20) and (21) are, in principle, com-
plex, their phases defined by the following (total angular
momentum J = 0, uniquely determines the spin angular
momentum once the orbital angular momentum is speci-
fied):

S = |S|eiδS

P = |P |eiδP (22)

D = |D|eiδD .

The process of generating complex amplitudes in terms
of δS , δP and δD is as follows: Helicity amplitudes are
evaluated directly from (18) before final-state interaction
(fsi) phases are put in. This allows us to determine the
real partial wave amplitudes, before fsi, through

S =
1√
3
(H+ +H− −H0) =

√
2
3
A|| − 1√

3
A0

P =
1√
2
(H+ −H−) = A⊥ (23)

D =
1√
6
(H+ +H− + 2H0) =

1√
3
A|| +

√
2
3
A0.

Once the real S, P and D amplitudes are determined,
their phase are put in by hand as in (22), and with these
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complex S, P and D wave amplitudes one can write down
complex (H0, H+, H−) from (20) or complex (A0, A||, A⊥)
from (21).

With these definitions the following expression for the
decay rate are obtained

Γ (B → ψV ) =
|k|

8πmB
(|H0|2 + |H+|2 + |H−|2)

=
|k|

8πmB
(|A0|2 + |A|||2 + |A⊥|2)

=
|k|

8πmB
(|S|2 + |P |2 + |D|2), (24)

where k is the momentum in B rest-frame.
The longitudinal and transverse polarizations are de-

fined as,

PL =
ΓL
Γ

=
|H0|2

|H0|2 + |H+|2 + |H−|2 (25)

PT = 1 − PL. (26)

We note from (20) that both PL and PT depend on the
relative phase between the S and D waves, (δSD = δS −
δD), through cos δSD in a compensatory manner such that
PL + PT = 1. Alternatively, one can define in term of
transversity amplitudes [17,7],

P|| =
Γ||
Γ

=
|A|||2

|A0|2 + |A|||2 + |A⊥|2 (27)

P⊥ =
Γ⊥
Γ

=
|A⊥|2

|A0|2 + |A|||2 + |A⊥|2 (28)

P0 = 1 − P|| − P⊥. (29)

From (21), one notes that while P|| depends on δSD,
P⊥ is independent of the strong phases, δS , δP and δD.
Equation (20) also shows that the only way information
on P wave phase can be obtained is via Γ+ ∝ |H+|2 or
Γ− ∝ |H−|2. ΓT = Γ+ + Γ− is independent of the P-wave
phase. With these definitions, we now consider the specific
case of B → ψK∗.

3.1 B → ψK∗ decays

With the definitions introduced in the preceding section,
the helicity amplitudes for B → ψK∗ decays are (before
fsi phases are introduced),

H0 = −GF√
2
VcbV

∗
csfψmψ(mB +mK∗)

×a2A
BK∗
1 (m2

ψ)(aξ1 − bξ2x) (30)

H± = −GF√
2
VcbV

∗
csfψmψ(mB +mK∗)

×a2A
BK∗
1 (m2

ψ)(ξ1 ∓ cξV y) (31)

where [1],

a =
m2
B −m2

ψ −m2
K∗

2mψmK∗
,

b =
2|k|2m2

B

mψmK∗(mB +mK∗)2
,

c =
2|k|mB

(mB +mK∗)2
, (32)

x =
ABK

∗
2 (m2

ψ)
ABK

∗
1 (m2

ψ)
,

y =
V BK

∗
(m2

ψ)
ABK

∗
1 (m2

ψ)
.

With these helicity amplitudes, we can write the transver-
sity amplitudes or the partial wave amplitudes via (21)
and (23).

We start with an amplitude analysis using the latest
CLEO data [7]. Working in the transversity basis, they [7]
determined the following branching ratio, dimensionless
amplitudes (denoted by Â0, Â⊥ and Â||) and their phases,

B(B → ψK∗) = (1.35 ± 0.18) × 10−3

|Â0|2 =
|A0|2
Γ

= 0.52 ± 0.08

|Â⊥|2 =
|A⊥|2
Γ

= 0.16 ± 0.09 (33)

|Â|||2 =
|A|||2
Γ

= 1 − |Â⊥|2 − |Â0|2 = 0.32 ± 0.12

φ|| = 3.00 ± 0.37
φ⊥ = −0.11 ± 0.46,

where φ|| and φ⊥ are the phases of the amplitudes A|| and
A⊥, respectively, with the choice φ0 = 0 [7]. The impor-
tant feature is that the amplitudes are relatively real.

Using the relation between the helicity, transversity
and partial wave phases, the CLEO analysis (33) can then
be restated in the following equivalent forms,

Helicity basis:

|Ĥ0|2 =
|H0|2
Γ

= 0.52 ± 0.08

|Ĥ+|2 =
|H+|2
Γ

= 0.014 ± 0.034 (34)

|Ĥ−|2 =
|H−|2
Γ

= 1 − |Ĥ0|2 − |Ĥ+|2 = 0.47 ± 0.08

φ+ = 2.92 ± 1.70
φ− = 3.01 ± 0.29,

Partial-wave basis:

|Ŝ|2 =
|S|2
Γ

= 0.77 ± 0.12

|P̂ |2 =
|P |2
Γ

= 0.16 ± 0.09 (35)

|D̂|2 =
|D|2
Γ

= 1 − |Ŝ|2 − |P̂ |2 = 0.073 ± 0.044

φS = 3.07 ± 0.19
φP = −0.11 ± 0.46
φD = 0.17 ± 0.44,



674 F.M. Al-Shamali, A.N. Kamal: Nonfactorization and final state interactions in (B,Bs) → ψP and ψV decays

The phases in (34) and (35) are evaluated relative to φ0
as in the CLEO analysis [7]. From (35) we note that |S| >
|P | > |D| as one might intuitively anticipate.

Next, having determined the helicity amplitudes, we
are in a position to extract information on the parameters
ξ1, ξ2 and ξV in a given model for the formfactors. We
summarize our method below.

The helicity amplitudes in terms of ξ1, ξ2 and ξV are
given in (30) and (31). The parameters ξ1, ξ2 and ξV ,
representing nonfactorization, are then obtained from the
constraints,

|Ĥ0|2 =
(a− bxξ21)2

2(1 + c2y2ξ2V 1) + (a− bxξ21)2

= 0.52 ± 0.08 (36)

|Ĥ+|2 =
(1 − cyξV 1)2

2(1 + c2y2ξ2V 1) + (a− bxξ21)2

= 0.014 ± 0.034 (37)

and

B(B → ψK∗) =
G2
F |k|

16πm2
B

|Vcb|2|Vcs|2f2
ψm

2
ψ

×(mB +mK∗)2a2
2|A1(m2

ψ)|2ξ21
×{

(a− bxξ21)2 + 2(1 + c2y2ξ2V 1)
}

= (1.35 ± 0.18) × 10−3 (38)

where we have defined the ratios,

ξ21 =
ξ2
ξ1

and ξV 1 =
ξV
ξ1
. (39)

The regions in ξ21 and ξV 1 space that explain the ex-
perimental value of polarization (|Ĥ0|2) are shown by the
two vertical bands in Fig. 4, while the region between the
two horizontal curves corresponds to non-negative values
for |Ĥ+|2 within the error. The boxes in Fig. 4 show the
four solutions we get by solving (36) and (37) for ξ21 and
ξV 1. The errors in ξ21 and ξV 1 are correlated as parts of
the boxes lie outside the overlap of the horizontal and ver-
tical bands.

Clearly, in BSW I model, within errors, there are so-
lutions with ξ21 = 1 and ξV 1 = 1 i.e. ξ1 = ξ2 = ξV . This
is the class of solutions discussed in [6]. The value of ξ1 is
then obtained from (38) and does not allow ξ1 = 1 solu-
tion. We repeated this procedure for other models of the
formfactors. the results are tabulated in Table 4.

From Table 4 it is evident that only BSW I model
permits solutions with ξ1 = ξ2 = ξV (but ξ1 6= 1); other
models do not allow solutions with ξ1 = ξ2 = ξV . There
are no solutions to the latest CLEO data [7] consistent
with factorization i.e., ξ1 = ξ2 = ξV = 1 in any of the
models we have considered.

We chose to work with CLEO data only rather than
use the world average for the longitududinal polarization
because it is only the CLEO data which allow a complete
determination of the decay amplitude. For the record, the

Fig. 4. The region in ξ21 and ξV 1 plane allowed by the lat-
est CLEO II measurments of |Ĥ0|2 (vertical bands) and |Ĥ+|2
(horizontal band) for B → ψK∗ in BSW I model

world average (our estimate) of all measurements [19–21,
7] of the longitududinal polarization in B → ψK∗ is

PL = 0.66 ± 0.05. (40)

To one stadard deviation there is no overlap of the world
average and the CLEO data. However, within errors there
are values of ξ21 and ξV 1, shown in Table 4 that fit the
world-averaged PL.

3.2 Bs → ψφ decays

If it is assumed that that nonfactorization contributions
are independent of the flavor of the light degree of freedom
we can use the values of ξ1, ξ2,1 and ξV,1 in Table 4 to
predict the branching ratio, polarization and transversity
for Bs → ψφ. Indeed, the branching ratio, longitudinal
polarization and trasverse polarization (|Ĥ−|2) for Bs →
ψφ can be related directly to the those for B → ψK∗
by eliminating ξ1, ξ21 and ξV 1. The result is shown in
Table 5. The following experimental data for Bs → ψφ
are now available [21,22]

B(Bs → ψφ) = (0.93 ± 0.33) × 10−3

PL = |Ĥ0|2 = 0.56 ± 0.21. (41)

By studying the results presented in Table 5, we note
the following: (i) Most of the predictions (those given by
BSW I model, BSW II model, CDDFGN model and both
first and third solutions of the ISGW model) are consistent
with available experimental results. (ii) The predictions
of the BSW I, BSW II and CDDFGN models show very
little sensitivity to the solution-type. (iii) |Ĥ+|2 has a very
small value in all the formfactor models considered.
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Table 4. Solutions of ξ1, ξ21 and ξV 1 using the latest CLEO II measurements
of branching ratio, polarization and |Ĥ+|2 for the process B → ψK∗. In the
table only positive solutions for ξ1 are shown since for every solution of ξ1 there
is another which is its negative

Model Solution 1 Solution 2 Solution 3 Solution 4

ξ1 1.79 ± 0.62 1.79 ± 0.62 1.26 ± 0.55 1.26 ± 0.55
BSW I ξ21 1.03 ± 0.29 3.77 ± 0.29 0.46 ± 0.68 4.34 ± 0.68

ξV 1 1.36 ± 0.61 1.36 ± 0.61 2.74 ± 1.2 2.74 ± 1.2

ξ1 1.79 ± 0.62 1.79 ± 0.62 1.26 ± 0.55 1.26 ± 0.55
BSW II ξ21 0.74 ± 0.21 2.70 ± 0.21 0.33 ± 0.49 3.11 ± 0.49

ξV 1 0.92 ± 0.41 0.92 ± 0.41 1.84 ± 0.83 1.84 ± 0.83

ξ1 2.94 ± 1.0 2.94 ± 1.0 2.07 ± 0.91 2.07 ± 0.91
CDDFGN ξ21 1.04 ± 0.29 3.80 ± 0.29 0.46 ± 0.69 4.38 ± 0.69

ξV 1 0.5 ± 0.22 0.5 ± 0.22 1.01 ± 0.45 1.01 ± 0.45

ξ1 1.93 ± 0.67 1.93 ± 0.67 1.36 ± 0.6 1.36 ± 0.6
AW ξ21 0.58 ± 0.16 2.11 ± 0.16 0.26 ± 0.38 2.43 ± 0.38

ξV 1 0.58 ± 0.26 0.58 ± 0.26 1.16 ± 0.52 1.16 ± 0.52

ξ1 2.6 ± 0.9 2.6 ± 0.9 1.83 ± 0.8 1.83 ± 0.8
ISGW ξ21 0.52 ± 0.15 1.90 ± 0.15 0.231 ± 0.34 2.19 ± 0.34

ξV 1 0.63 ± 0.28 0.63 ± 0.28 1.27 ± 0.57 1.27 ± 0.57

Table 5. The branching ratios, |Ĥ0|2 and |Ĥ−|2 for the process Bs → ψφ using for
ξ1, ξ21 and ξV 1 the values in Table 4 calculated for B → ψK∗

Model Solution 1 Solution 2 Solution 3 Solution 4

BR ×10−3 0.91 ± 0.14 0.75 ± 0.12 0.88 ± 0.14 0.77 ± 0.12
BSW I |Ĥ0|2 0.50 ± 0.07 0.39 ± 0.08 0.48 ± 0.07 0.40 ± 0.08

|Ĥ−|2 0.49 ± 0.08 0.60 ± 0.09 0.50 ± 0.08 0.58 ± 0.10

BR ×10−3 0.91 ± 0.14 0.75 ± 0.12 0.89 ± 0.14 0.78 ± 0.12
BSW II |Ĥ0|2 0.49 ± 0.07 0.39 ± 0.08 0.48 ± 0.08 0.41 ± 0.08

|Ĥ−|2 0.49 ± 0.08 0.59 ± 0.09 0.51 ± 0.08 0.58 ± 0.10

BR ×10−3 1.2 ± 0.19 1.2 ± 0.19 1.2 ± 0.19 1.2 ± 0.19
CDDFGN |Ĥ0|2 0.47 ± 0.08 0.47 ± 0.08 0.46 ± 0.08 0.46 ± 0.08

|Ĥ−|2 0.52 ± 0.09 0.52 ± 0.09 0.52 ± 0.09 0.52 ± 0.09

BR ×10−3 1.7 ± 0.28 0.96 ± 0.17 1.5 ± 0.27 1.0 ± 0.18
AW |Ĥ0|2 0.53 ± 0.06 0.19 ± 0.08 0.49 ± 0.07 0.24 ± 0.09

|Ĥ−|2 0.45 ± 0.08 0.79 ± 0.08 0.50 ± 0.06 0.73 ± 0.13

BR ×10−3 0.82 ± 0.15 0.42 ± 0.07 0.71 ± 0.14 0.43 ± 0.07
ISGW |Ĥ0|2 0.57 ± 0.06 0.15 ± 0.08 0.54 ± 0.06 0.23 ± 0.11

|Ĥ−|2 0.41 ± 0.07 0.80 ± 0.08 0.46 ± 0.06 0.76 ± 0.13

Experiment [21,22] B(Bs → ψφ) = (0.93 ± 0.33) × 10−3

PL = |Ĥ0|2 = 0.56 ± 0.21

3.3 B → ψ(2S)K∗ Decays

The branching ratio, longitudinal polarization and trans-
verse polarization (|Ĥ−|2) for B → ψ(2S)K∗ can also be
related directly to those for B → ψK∗ by eliminating ξ1,
ξ21 and ξV 1. The result is shown in Table 6. To the best of
our knowledge, only the branching ratio for this process

is available [16],

B(B → ψ(2S)K∗) = (0.9 ± 0.29) × 10−3. (42)

From Table 6 we notice that the predictions of the
branching ratio, |Ĥ0|2 and |Ĥ−|2 are almost model inde-
pendent. The predictions of solutions 1 and 3 are the clos-
est to available experimental data. The other two solutions
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Table 6. The branching ratios, |Ĥ0|2 and |Ĥ−|2 for the process B → ψ(2S)K∗ using
for ξ1, ξ21 and ξV 1 the values in Table 4 calculated for B → ψK∗

Model Solution 1 Solution 2 Solution 3 Solution 4

BR ×10−3 0.80 ± 0.19 0.43 ± 0.11 0.62 ± 0.17 0.37 ± 0.09
BSW I |Ĥ0|2 0.46 ± 0.04 0.001 ± 0.006 0.43 ± 0.05 0.03 ± 0.05

|Ĥ−|2 0.49 ± 0.08 0.91 ± 0.10 0.57 ± 0.05 0.97 ± 0.06

BR ×10−3 0.80 ± 0.17 0.52 ± 0.12 0.71 ± 0.16 0.52 ± 0.11
BSW II |Ĥ0|2 0.39 ± 0.06 0.07 ± 0.04 0.36 ± 0.06 0.11 ± 0.06

|Ĥ−|2 0.58 ± 0.08 0.89 ± 0.07 0.63 ± 0.06 0.87 ± 0.10

BR ×10−3 0.79 ± 0.19 0.43 ± 0.11 0.62 ± 0.17 0.36 ± 0.09
CDDFGN |Ĥ0|2 0.46 ± 0.04 0.001 ± 0.006 0.43 ± 0.05 0.031 ± 0.05

|Ĥ−|2 0.49 ± 0.08 0.91 ± 0.10 0.57 ± 0.05 0.97 ± 0.06

BR ×10−3 0.79 ± 0.19 0.43 ± 0.11 0.62 ± 0.17 0.36 ± 0.09
AW |Ĥ0|2 0.46 ± 0.04 0.001 ± 0.006 0.43 ± 0.05 0.031 ± 0.05

|Ĥ−|2 0.49 ± 0.08 0.91 ± 0.10 0.57 ± 0.05 0.97 ± 0.06

BR ×10−3 1.1 ± 0.25 0.56 ± 0.15 0.81 ± 0.23 0.47 ± 0.12
ISGW |Ĥ0|2 0.46 ± 0.04 0.001 ± 0.006 0.44 ± 0.05 0.03 ± 0.05

|Ĥ−|2 0.48 ± 0.08 0.90 ± 0.10 0.56 ± 0.05 0.97 ± 0.05

Experiment [16] B(B → ψ(2S)K∗) = (0.9 ± 0.29) × 10−3

yield low branching ratios and close to zero longitudinal
polarization.

4 Results in factorization approximation

For the sake of completeness, we present in this section
the factorization approximation (ξ1 = ξ21 = ξV 1 = 1) pre-
diction for branching ratio, |Ĥ0|2 and |Ĥ−|2 using the five
theoretical models considered for the formfactors. These
predictions are presented in Table 7.

From Table 7, we see that the factorization approxima-
tion predicts low values for the branching ratios compared
to experiment. For the processes B → ψK∗ and Bs → ψφ,
with the exception of BSW I model, the factorization ap-
proximation also underestimates the longitudinal polar-
ization.

If we scale the branching ratio by a factor of 3.5, we
find that the BSW I model predictions agree, within er-
ror, with the available experimental data. This could be
achieved by giving the nonfactorization parameters the
values,

ξ1 =
√

3.5, ξ21 = ξV 1 = 1 (43)

or
ξ1 = ξ2 = ξV =

√
3.5 . (44)

This is what has been referred to as new factorization
in [6].

5 Discussion

We have shown that B → ψK and ψ(2S)K data require
nonfactorized contributions in all of the five formfactor

models we have considered. The smallest amount of non-
factorized contribution is needed for the BSW II model
while the AW model requires the largest. We have calcu-
lated the branching ratios for Bs → ψη, ψη′, ψ(2S)η, and
ψ(2S)η′ in each model as functions of ξF1 and displayed
the result in Fig. 3. These branching ratios averaged over
the five models are tabulated in Table 3 for a few values
of the parameter ξF1 .

We have used the latest CLEO data on B(B → ψK∗)
and the transversity amplitudes to determine the three
nonfactorization parameters ξ1, ξ2 and ξV defined in (19).
There are four solutions which are expressed in terms of
ξ1 and the ratios ξ21 = ξ2/ξ1, and ξV 1 = ξV /ξ1. These
solutions are displayed in Fig. 4 for BSW I model and in
Table 4 for all the five models. We find that solutions exist
for ξ2,1 = 1 and ξV,1 = 1 only in BSW I model but then
ξ1 6= 1, i.e. there are no solutions where ξ1 = ξ2 = ξV = 1
which would signal factorization.

Assuming that the parameters ξ21 and ξV 1 determined
from B → ψK∗ are the same in Bs → ψφ decay, we
calculated the branching ratio, longitudinal and transverse
polarizations of Bs → ψφ decay in all five models. Present
data are consistent with model predictions but for a few
exceptions as is seen from Table 5.

The branching ratio, longitudinal and transverse po-
larizations of B → ψ(2S)K∗ decay were also calculated
assuming that the parameters ξ21 and ξV 1 determined
from B → ψK∗ are the same in B → ψ(2S)K∗ decay.
The results are shown in Table 6.

Finally, we find that in the factorization approxima-
tion none of the formfactor models predict correctly the
branching ratios for for B → ψK∗, Bs → ψφ and B →
ψ(2S)K∗. As for the longitudinal polarizations, |Ĥ0|2, in
B → ψK∗ and Bs → ψφ, only the BSW I model predicts
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Table 7. Predictions of branching ratios, |Ĥ0|2 and |Ĥ−|2 for the processes B →
ψK∗, Bs → ψφ and B → ψ(2S)K∗ using the factorization approximation ξ1 =
ξ21 = ξV 1 = 1. The errors in branching ratios are due to the errors in Wilson
coefficients, decay constants and B meson life times

BR× 10−3 |Ĥ0|2 |Ĥ−|2

BSW I 0.40 ± 0.24 0.57 0.39
BSW II 0.33 ± 0.20 0.35 0.64

B → ψK∗ CDDFGN 0.24 ± 0.14 0.37 0.62
AW 0.33 ± 0.19 0.12 0.87
ISGW 0.15 ± 0.09 0.06 0.93
Experiment [7] 1.35 ± 0.18 0.52 ± 0.08 0.47 ± 0.08

BSW I 0.27 ± 0.16 0.55 0.41
BSW II 0.23 ± 0.14 0.35 0.64

Bs → ψφ CDDFGN 0.22 ± 0.13 0.32 0.66
AW 0.44 ± 0.26 0.20 0.79
ISGW 0.09 ± 0.06 0.20 0.80
Experiment [21,22] 0.93 ± 0.33 0.56 ± 0.21 -

BSW I 0.24 ± 0.14 0.49 0.43
BSW II 0.23 ± 0.13 0.29 0.69

B → ψ(2S)K∗ CDDFGN 0.13 ± 0.07 0.35 0.65
AW 0.22 ± 0.13 0.23 0.76
ISGW 0.14 ± 0.08 0.22 0.77
Experiment [16] 0.90 ± 0.29 - -

them correctly. BSW I also predicts |Ĥ−|2 correctly for
B → ψK∗.
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